Consider an InSb NW with ballistic mean free path of 150nm. Calculate the current through a 250nm long InSb NW when a 100mV bias is applied. Assume that valley degeneracy 1.

Respuesta :

Answer:

[tex]I =38.46KA[/tex]

Explanation:

Given parameters include:

V = 100mV = 100 × 10⁻³ V

mean free path(W) = 150nm = 150 × 10⁻⁹ m

Length = 250 nm

From Ohm's Law ;

V = IR

[tex]I = \frac{V}{R}[/tex]    ---------- equation (1)

Also;

[tex]R = \rho__0\frac{L}{A}[/tex]

where:

[tex]\rho __o[/tex] = resistivity  of InSb = 4 × 10⁻¹³ Ω-m

L = length

A = area of cross section

Replacing our values in the above equation; we have:

[tex]R = 4*10^{-13}*\frac{250nm}{150nm*250nm}[/tex]

[tex]R = 4*10^{-13}*\frac{1}{150*10^{-9}m}[/tex]

[tex]R = 2.6*10^{-6}[/tex] Ω

[tex]R = 2.6 \mu[/tex]Ω

From equation (1):

[tex]I = \frac{V}{R}[/tex]  

Therefore;

[tex]I = \frac{100*10^{-3}}{2.6*10^{-6}}[/tex]

[tex]I =38461.54 V/[/tex]Ω

Since 1 V/Ω = 0.001 kilo ampere (KA)

Then;

[tex]I =(38461.54 *0.001)KA[/tex]

[tex]I =38.46KA[/tex]