The rate constant of a first-order reaction is 3.46 Ɨ 10āˆ’2 sāˆ’1 at 298 K. What is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol

Respuesta :

Answer:

[tex]0.7022 s^{-1}[/tex] is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol.

Explanation:

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at 298 K= [tex]3.46\times 10^{-2} s^{-1}[/tex]

[tex]K_2[/tex] = rate constant at 350 K =?

= activation energy for the reaction = 50.2 kJ/mol = 50200 J/mol

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = 298 K

[tex]T_2[/tex] = final temperature = 350 K

Now put all the given values in this formula, we get:

[tex]\log (\frac{K_2}{3.46\times 10^{-2} s^{-1}})=\frac{50200 J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{350 K}-\frac{1}{298 K}][/tex]

[tex]K_2=0.7022 s^{-1}[/tex]

[tex]0.7022 s^{-1}[/tex] is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol.