Answer:
[tex]0.7022 s^{-1}[/tex] is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol.
Explanation:
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at 298 K= [tex]3.46\times 10^{-2} s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at 350 K =?
= activation energy for the reaction = 50.2 kJ/mol = 50200 J/mol
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = 298 K
[tex]T_2[/tex] = final temperature = 350 K
Now put all the given values in this formula, we get:
[tex]\log (\frac{K_2}{3.46\times 10^{-2} s^{-1}})=\frac{50200 J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{350 K}-\frac{1}{298 K}][/tex]
[tex]K_2=0.7022 s^{-1}[/tex]
[tex]0.7022 s^{-1}[/tex] is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol.