Answer:
Explanation:
Given
When [tex]m_1[/tex] mass is attached to the spring its frequency is [tex]f_1=12\ Hz[/tex]
when another mass [tex]m_2[/tex] is attached to [tex]m_1[/tex] , frequency changes to [tex]f_2=4\ Hz[/tex]
frequency of spring mass system is given by
[tex]f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}[/tex]
for [tex]m_1[/tex]
[tex]f_1=\frac{1}{2\pi }\sqrt{\frac{k}{m_1}}[/tex]
[tex]12=\frac{1}{2\pi }\sqrt{\frac{k}{m_1}}-----1[/tex]
for [tex]m_1[/tex] and [tex]m_2[/tex]
[tex]f_2=\frac{1}{2\pi }\sqrt{\frac{k}{m_1+m_2}}[/tex]
[tex]4=\frac{1}{2\pi }\sqrt{\frac{k}{m_1+m_2}}----2[/tex]
divide 1 and 2
[tex]3=\sqrt{\frac{m_1+m_2}{m_1}}[/tex]
squaring
[tex]9=1+\frac{m_2}{m_1}[/tex]
[tex]\frac{m_2}{m_1}=8[/tex]