a. The [tex]\vec k[/tex] component tells you the particle's height:
[tex]3t=16\implies t=\dfrac{16}3[/tex]
b. The particle's velocity is obtained by differentiating its position function:
[tex]\vec v(t)=\dfrac{\mathrm d\vec r(t)}{\mathrm dt}=-\sin t\,\vec\imath+\cos t\,\vec\jmath+3\,\vec k[/tex]
so that its velocity at time [tex]t=\frac{16}3[/tex] is
[tex]\vec v\left(\dfrac{16}3\right)=-\sin\dfrac{16}3\,\vec\imath+\cos\dfrac{16}3\,\vec\jmath+3\,\vec k[/tex]
c. The tangent to [tex]\vec r(t)[/tex] at [tex]t=\frac{16}3[/tex] is
[tex]\vec T(t)=\vec r\left(\dfrac{16}3\right)+\vec v\left(\dfrac{16}3\right)t[/tex]