Respuesta :
Answer:
a. K = 3/3920000
b. 0.26
c. 0.189
Step-by-step explanation:
f(x,y) is a join distribution, so the following condition must be satisfied
∫∫ f(x,y) dydx {-∞ to ∞} {-∞ to ∞} = 1
A. Finding K
∫∫ k(x² + y²) {30 to 50}{30 to 50} dydx = 1
k ∫∫ (x² + y²) {30 to 50}{30 to 50} dydx= 1
k ∫ (x²y + y³/3) {30 to 50}{30 to 50} dx= 1
k ∫ (50x² + 50³/3 - 30x² - 30³/3) dx {30 to 50} = 1
k ∫ (20x² + (50³ - 30³)/3) dx {30 to 50} = 1
k ∫ (20x² + 98000/3) dx {30 to 50} = 1
k(20x³/3 + 98000x/3) {30,50} = 1
k(20 * 50³/3 + 98000 * 50/3 - 20 * 30³/3 - 98000 * 30/3) = @
k(3920000)/3 = 1
K = 3/3920000
b.
P(30<-x<-40 and 40<-Y<50) = ∫∫ k(x² + y²) {30 to 40}{40 to 50} dydx
k ∫∫ (x² + y²) {30 to 40}{40 to 50} dydx
k ∫ (x²y + y³/3) {30 to 40}{40 to 50} dx=
k ∫ (50x² + 50³/3 - 40x² - 40³/3) dx {30 to 40}
k ∫ (10x² + (50³ - 40³)/3) dx {30 to 40}
k ∫ (10x² + 61000/3) dx {30 to 40}
k(10x³/3 + 61000x/3) {30,40}
k(10 * 40³/3 + 61000 * 40/3 - 10 * 30³/3 - 61000 * 30/3)
k(980000/3)
But k = 3/3920000
So
P(30<-x<-40 and 40<-Y<50) = 3/3920000 * 980000/3
P(30<-x<-40 and 40<-Y<50) = 0.25
c. Probability that both tries are undefined.
This means that both pressure are between 30 and 40.
So, we'll solve for P(30<-x<-40 and 30<-Y<40)
P(30<-x<-40 and 30<-Y<40) = ∫∫ k(x² + y²) {30 to 40}{30 to 40} dydx
k ∫∫ (x² + y²) {30 to 40}{30 to 40} dydx
k ∫ (x²y + y³/3) {30 to 40}{30 to 40} dx=
k ∫ (40x² + 40³/3 - 30x² - 30³/3) dx {30 to 40}
k ∫ (10x² + (40³ - 30³)/3) dx {30 to 40}
k ∫ (10x² + 37000/3) dx {30 to 40}
k(10x³/3 + 37000x/3) {30,40}
k(10 * 40³/3 + 37000 * 40/3 - 10 * 30³/3 - 37000 * 30/3)
k(740000/3)
But k = 3/3920000
So
P(30<-x<-40 and 30<-Y<40) = 3/3920000 * 740000/3
P(30<-x<-40 and 30<-Y<40) = 0.188775510204081
P(30<-x<-40 and 30<-Y<40) = 0.189
The value of k and respective probabilities are; k = 7.653 * 10⁻⁷ and P(30 < -x < -40 and 40 < -Y < 50) = 0.25
What is the Probability Density Function?
A) We are given the joint density as;
f(x,y)= k(x² + y², 30 < -x < 50; 30 < -y < 50
To find K, we will use double integral;
∫₅₀³⁰∫³⁰₅₀ k(x² + y²) dydx = 1
k∫₅₀³⁰[(x²y + y³/3)]₅₀³⁰ dx= 1
k∫₅₀³⁰(50x² + 50³/3 - 30x² - 30³/3) dx = 1
k∫₅₀³⁰(20x² + 98000/3) dx = 1
k[(20x³/3 + 98000x/3)]₅₀³⁰ = 1
k((20 × 50³/3) + (98000 × 50/3) - (20 × 30³/3) - (98000 × 30/3) = 1
k(3920000)/3 = 1
K = 3/3920000 = 7.653 * 10⁻⁷
B. We want to find P(30 < -x < -40 and 40 < -Y < 50) . Thus, we can express the probability using double integral as;
k∫₄₀³⁰∫₅₀⁴⁰ (x² + y²) dydx
k∫₄₀³⁰[(x²y + y³/3)]₅₀⁴⁰ dx
k∫₄₀³⁰(50x² + 50³/3 - 40x² - 40³/3) dx
k∫₄₀³⁰(10x² + 61000/3) dx
k[(10x³/3 + 61000x/3)]₄₀³⁰
k((10 * 40³/3) + (61000 * 40/3) - (10 * 30³/3) - (61000 * 30/3))
⇒ k(980000/3)
But k = 7.653 * 10⁻⁷
Thus;
P(30 < -x < -40 and 40 < -Y < 50) = 7.653 * 10⁻⁷ * 980000/3
P(30 < -x < -40 and 40 < -Y < 50) = 0.25
C) Probability that both tries are undefined means that both pressures are between 30 and 40.
Thus, this is; P(30 < -x < -40 and 30 < -Y < 40)
= ∫₄₀³⁰∫₄₀³⁰ k(x² + y²) dydx
k∫₄₀³⁰∫₄₀³⁰ (x² + y²) dydx
k∫₄₀³⁰](x²y + y³/3)]₄₀³⁰ dx
k∫₄₀³⁰(40x² + 40³/3 - 30x² - 30³/3) dx
k∫₄₀³⁰(10x² + 37000/3)
k[(10x³/3 + 37000x/3)]₄₀³⁰
k((10 * 40³/3) + (37000 * 40/3) - (10 * 30³/3) - (37000 * 30/3))
= k(740000/3)
But k = 7.653 * 10⁻⁷
Thus;
P(30 < -x < -40 and 30 < -Y < 40) = 7.653 * 10⁻⁷ * 740000/3
P(30 < -x < -40 and 30 < -Y < 40) = 0.189
Read more about probability density at; https://brainly.com/question/2500166