Respuesta :
Answer:
Step-by-step explanation:
End of the universe i.e infinity(∞)
So, the work needed to raise the payload from the surface of the moon(i.e x = R) to the end of the universe (i.e x = ∞) is given by:
[tex]work=\int\limits^{x=\infty}_{x=R} {f(x)} \, dx \\\\=\int\limits^\infty_R {\frac{R^2P}{x^2}} \, dx \\\\=R^2P\int\limits^\infty_R {\frac{1}{x^2}} \, dx \\\\=R^2P[{-\frac{1}{x^2}}]\limits^\infty_R\\\\=R^2P[-0+\frac{1}{R}]\\\\=R^2P[\frac{1}{R}]\\\\=PR[/tex]
where R= radius of moon; P= weight of payload are constant
The radius of the moon is simply the distance from the center of the moon to its circumference.
The amount of work needed to raise the payload from the surface of the moon is -RP
The integral that represents the amount of work done is represented as:
[tex]\mathbf{\int\limits^{\infty}_R f(x)}[/tex]
Where
[tex]\mathbf{f(x) = \frac{R^2P}{x^2}}[/tex]
So, the integral function becomes
[tex]\mathbf{\int\limits^{\infty}_R f(x) = \int\limits^{\infty}_R\frac{R^2P}{x^2}}[/tex]
Rewrite the integral function as:
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \int\limits^{\infty}_R\frac{1}{x^2}}[/tex]
Further, rewrite as:
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \int\limits^{\infty}_R x^{-2}}[/tex]
Integrate
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \times (-x^{-1})|\limits^{\infty}_R}[/tex]
Expand
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \times (-R^{-1} - -\infty^{-1})}[/tex]
Simplify the expression above
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \times (-R^{-1} +0)}[/tex]
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \times (-R^{-1})}[/tex]
Remove bracket
[tex]\mathbf{\int\limits^{\infty}_R f(x) = R^2P \times -R^{-1}}[/tex]
Evaluate the product
[tex]\mathbf{\int\limits^{\infty}_R f(x) = -RP}[/tex]
Hence, the amount of work needed to raise the payload is -RP
Read more about work done at:
https://brainly.com/question/16179318