Answer : The pH of the solution is, 9.63
Explanation : Given,
The dissociation constant for HCN = [tex]pK_a=9.31[/tex]
First we have to calculate the moles of HCN and NaCN.
[tex]\text{Moles of HCN}=\text{Concentration of HCN}\times \text{Volume of solution}=0.496M\times 0.225L=0.1116mole[/tex]
and,
[tex]\text{Moles of NaCN}=\text{Concentration of NaCN}\times \text{Volume of solution}=0.399M\times 0.225L=0.08978mole[/tex]
The balanced chemical reaction is:
[tex]HCN+NaOH\rightarrow NaCN+H_2O[/tex]
Initial moles 0.1116 0.0461 0.08978
At eqm. (0.1116-0.0461) 0 (0.08978+0.0461)
0.0655 0.1359
Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]
Now put all the given values in this expression, we get:
[tex]pH=9.31+\log (\frac{0.1359}{0.0655})[/tex]
[tex]pH=9.63[/tex]
Therefore, the pH of the solution is, 9.63