Find the unit tangent vector T(t). r(t) = t^2 i + tj + 16/3 k, p(16, 4, 16/3) T(4) = Find a set of parametric equations for the line tangent to the space curve at point P. (Enter your answers at a comma-separated list. Use t for the variable of parameterization.

Respuesta :

Answer:

Therefore the unit tangent vector is

[tex]T(t)=\frac{2t \hat i + \hat j}{\sqrt{4t^2+1} }[/tex]

Therefore the parametric form is

[tex]x=16 +8t[/tex]

[tex]y=4+t[/tex]

[tex]z=\frac{16}{3}[/tex]

Step-by-step explanation:

Given [tex]r(t) = t^2 \hat i+t\hat j+\frac{16}{3} \hat k[/tex]

To find the unit tangent we need to find r'(t) and |r'(t)|.

The unit tangent vector [tex]T(t) =\frac{r'(t)}{|r'(t)|}[/tex]

[tex]r(t) = t^2 \hat i+t\hat j+\frac{16}{3} \hat k[/tex]

Differentiate with respect to t

[tex]r'(t)=2t\hat i+\hat j[/tex]

[tex]|r'(t)|=\sqrt{(2t)^2+1^2} =\sqrt{4t^2+1}[/tex]

Therefore the unit tangent vector is

[tex]T(t)=\frac{2t \hat i + \hat j}{\sqrt{4t^2+1} }[/tex] .......(1)

The parametrization  equation

x(t) = t² , y(t)=t and z(t) [tex]=\frac{16}{3}[/tex]

Given point is [tex]P(16,4, \frac{16}{3} )[/tex]

Therefore,

[tex]16= t^2[/tex]   ,    [tex]4=t[/tex]   and      [tex]\frac{16}{3}= \frac{16}{3}[/tex]

Then t =4.

The unit tangent vector at t= 4

[Putting t = 4 in equation (1)]

[tex]T(4)=\frac{2.4 \hat i+\hat j}{\sqrt{4.4^2+1}}[/tex]

      [tex]=\frac{1}{65}(8 \hat i+ \hat j)[/tex]

The parametric equation is

x= x₁+at

y =y₁+bt

z=z₁+ct

Here a=8 , b=1 and c=0

[tex]x_1= 16[/tex]  ,   [tex]y_1=4[/tex]   and   [tex]z_1= \frac{16}{3}[/tex]

Therefore the parametric form is

[tex]x=16 +8t[/tex]

[tex]y=4+1.t =4+t[/tex]

[tex]z=\frac{16}{3} + 0.t =\frac{16}{3}[/tex]