contestada

A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load").

Respuesta :

Explanation:

Formula for maximum efficiency of a Carnot refrigerator is as follows.

      [tex]\frac{W}{Q_{H_{1}}} = \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}}[/tex] ..... (1)

And, formula for maximum efficiency of Carnot refrigerator is as follows.

     [tex]\frac{W}{Q_{C_{2}}} = \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}}[/tex] ...... (2)

Now, equating both equations (1) and (2) as follows.

 [tex]Q_{C_{2}} \frac{T_{H_{2}} - T_{C_{2}}}{T_{C_{2}}}[/tex] = [tex]Q_{H_{1}} \frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{1}}}[/tex]        

        [tex]\gamma = \frac{Q_{C_{2}}}{Q_{H_{1}}}[/tex]

                    = [tex]\frac{T_{C_{2}}}{T_{H_{1}}} (\frac{T_{H_{1}} - T_{C_{1}}}{T_{H_{2}} - T_{C_{2}}})[/tex]

                    = [tex]\frac{250}{600} (\frac{(600 - 300)K}{300 K - 250 K})[/tex]

                    = 2.5

Thus, we can conclude that the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load") is 2.5.