Answer:
[tex]\frac{dh}{dt} = 1.3 \times 10^{-3} \frac{ft}{s}[/tex], level is rising.
Explanation:
Since liquid water is a incompresible fluid, density can be eliminated of the equation of Mass Conservation, which is simplified as follows:
[tex]\dot V_{in} - \dot V_{out} = \frac{dV_{tank}}{dt}[/tex]
[tex]\frac{\pi}{4}\cdot D_{in}^2 \cdot v_{in}-\frac{\pi}{4}\cdot D_{out}^2 \cdot v_{out}= \frac{\pi}{4}\cdot D_{tank}^{2} \cdot \frac{dh}{dt} \\D_{in}^2 \cdot v_{in} - D_{out}^2 \cdot v_{out} = D_{tank}^{2} \cdot \frac{dh}{dt} \\\frac{dh}{dt} = \frac{D_{in}^2 \cdot v_{in} - D_{out}^2 \cdot v_{out}}{D_{tank}^{2}}[/tex]
By replacing all known variables:
[tex]\frac{dh}{dt} = \frac{(0.3 ft)^{2}\cdot (5 \frac{ft}{s} ) - (0.4 ft)^{2} \cdot (2 \frac{ft}{s} )}{(10 ft)^{2}}\\\frac{dh}{dt} = 1.3 \times 10^{-3} \frac{ft}{s}[/tex]
The positive sign of the rate of change of the tank level indicates a rising behaviour.