Solve each inequality for x. (Enter your answers using interval notation.)

(a) ln(x) < 0

(b) ex > 2

Solve each equation for x.

(a) ln(3x − 17) = 5

Express the given quantity as a single logarithm.

ln(a + b) + ln(a − b) − 5 ln(c)

Respuesta :

Answer:

(a) ln(x) = 0

Then 0 < x < 1

(b) e^x > 2

Then ln2 < x < ∞

(a) ln(3x - 17) = 5

x = 55.1377197

ln(a + b) + ln(a - b) - 5ln(c)

= ln[(a² - b²)/c^5]

Step-by-step explanation:

First Part.

(a) ln(x) < 0

=> x < e^(0)

x < 1 ....................................(1)

But the logarithm of 0 is 1, and the logarithm of negative numbers are undefined, we can exclude the values of x ≤ 0.

In fact the values of x that satisfy this inequalities are between 0 and 1.

Therefore, we write:

0 < x < 1

(b) e^x > 2

This means x > ln2

and must be finite.

We write as:

ln2 < x < ∞

Second Part.

(a) ln(3x - 17) = 5

3x - 17 = e^5

3x = 17 + e^5

x = (1/3)(17 + e^5)

= 55.1377197

Third Part.

We need to write

ln(a + b) + ln(a - b) - 5ln(c)

as a single logarithm.

ln(a + b) + ln(a - b) - 5ln(c)

= ln(a + b) + ln(a - b) - ln(c^5)

= ln[(a + b)(a - b)/(c^5)]

= ln[(a² - b²)/c^5]

Using exponential and logarithmic functions, it is found that:

a) The solution of the inequality [tex]\ln{(x)} < 0[/tex] is [tex](-infty, 1)[/tex].

b) The solution of the inequality [tex]e^x > 2[/tex] is [tex](\ln{2}, \infty)[/tex]

a) The solution to the equation [tex]\ln{(3x - 17)} = 5[/tex] is x = 55.14.

As a single logarithm, the expression is:

[tex]\ln{\left(\frac{a^2 - b^2}{c^5}\right)}[/tex]

Inequality a:

[tex]\ln{(x)} < 0[/tex]

Applying the exponential to both sides:

[tex]e^{\ln{(x)}} < e^{0}[/tex]

[tex]x < 1[/tex]

Hence, in interval notation:

[tex](-infty, 1)[/tex]

Inequality b:

[tex]e^x > 2[/tex]

Applying ln to both sides:

[tex]\ln{e^x} > \ln{2}[/tex]

[tex]x > \ln{2}[/tex]

Hence, in interval notation, the solution is:

[tex](\ln{2}, \infty)[/tex]

Equation a:

[tex]\ln{(3x - 17)} = 5[/tex]

[tex]e^{\ln{(3x - 17)}} = e^5[/tex]

[tex]3x - 17 = e^5[/tex]

[tex]3x = 17 + e^5[/tex]

[tex]x = \frac{17 + e^5}{3}[/tex]

[tex]x = 55.14[/tex]

The quantity given is:

[tex]\ln{(a + b)} + \ln{(a - b)} - 5\ln{c}[/tex]

To express as a single logarithm, these following properties are applied:

[tex]\ln{a} + \ln{b} = \ln{ab}[/tex]

[tex]\ln{a} - \ln{b} = \ln{\left(\frac{a}{b}\right)}[/tex]

[tex]a\ln{b} = \ln{b^a}[/tex]

Hence:

[tex]\ln{(a + b)} + \ln{(a - b)} - 5\ln{c} = \ln{(a + b)(a - b)} - \ln{c^5}[/tex]

As a single logarithm, the expression is:

[tex]\ln{\left(\frac{a^2 - b^2}{c^5}\right)}[/tex]

A similar problem is given at https://brainly.com/question/21506771