The density of potassium, which has the BCC structure, is 0.855 g/cm3. The atomic weight of potassium is 39.09 g/mol. Calculate (a) the lattice parameter; and (b) the atomic radius of potassium.

Respuesta :

Answer:

For a: The edge length of the crystal is 533.5 pm

For b: The atomic radius of potassium is 231.01 pm

Explanation:

  • For a:

To calculate the lattice parameter or edge length of the crystal, we use the equation:

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density = [tex]0.855g/cm^3[/tex]

Z = number of atom in unit cell = 2  (BCC)

M = atomic mass of metal = 39.09 g/mol

[tex]N_{A}[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]

a = edge length of unit cell = ?

Putting values in above equation, we get:

[tex]0.855=\frac{2\times 39.09}{6.022\times 10^{23}\times (a)^3}\\\\\a=5.335\times 10^{-8}cm=533.5pm[/tex]

Conversion factor:  [tex]1cm=10^{10}pm[/tex]

Hence, the edge length of the crystal is 533.5 pm

  • For b:

To calculate the edge length, we use the relation between the radius and edge length for BCC lattice:

[tex]R=\frac{\sqrt{3}a}{4}[/tex]

where,

R = radius of the lattice = ?

a = edge length = 533.5 pm

Putting values in above equation, we get:

[tex]R=\frac{\sqrt{3}\times 533.5}{4}=231.01pm[/tex]

Hence, the atomic radius of potassium is 231.01 pm