Respuesta :
Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
a E =[tex]1.685*10^3 N/C[/tex]
b E =[tex]36.69*10^3 N/C[/tex]
c E = 0 N/C
d [tex]V = 6.7*10^3 V[/tex]
e [tex]V = 26.79*10^3V[/tex]
f V = [tex]34.67 *10^3 V[/tex]
g [tex]V= 44.95*10^3 V[/tex]
h [tex]V= 44.95*10^3 V[/tex]
i [tex]V= 44.95*10^3 V[/tex]
Explanation:
From the question we are given that
The first charge [tex]q_1 = 2.00 \mu C = 2.00*10^{-6} C[/tex]
The second charge [tex]q_2 =1.00 \muC = 1.00*10^{-6}[/tex]
The first radius [tex]R_1 = 0.500m[/tex]
The second radius [tex]R_2 = 1.00m[/tex]
[tex]Generally \ Electric \ field = \frac{1}{4\pi\epsilon_0}\frac{q_1+\ q_2}{r^2}[/tex]
And [tex]Potential \ Difference = \frac{1}{4\pi \epsilon_0} [\frac{q_1 }{r}+\frac{q_2}{R_2} ][/tex]
The objective is to obtain the the magnitude of electric for different cases
And the potential difference for other cases
Considering a
r = 4.00 m
[tex]E = \frac{((2+1)*10^{-6})*8.99*10^9}{16}[/tex]
[tex]= 1.685*10^3 N/C[/tex]
Considering b
[tex]r = 0.700 m \ , R_2 > r > R_1[/tex]
This implies that the electric field would be
[tex]E = \frac{1}{4\pi \epsilon_0}\frac{q_1}{r^2}[/tex]
This because it the electric filed of the charge which is below it in distance that it would feel
[tex]E = 8*99*10^9 \frac{2*10^{-6}}{0.4900}[/tex]
= [tex]36.69*10^3 N/C[/tex]
Considering c
r = 0.200 m
=> [tex]r<R_1<R_2[/tex]
The electric field = 0
This is because the both charge are above it in terms of distance so it wont feel the effect of their electric field
Considering d
r = 4.00 m
=> [tex]r > R_1 >r>R_2[/tex]
Now the potential difference is
[tex]V =\frac{1}{4\pi \epsilon_0} \frac{q_1 + \ q_2}{r} = 8.99*10^9 * \frac{3*10^{-6}}{4} = 6.7*10^3 V[/tex]
This so because the distance between the charge we are considering is further than the two charges given
Considering e
r = 1.00 m [tex]R_2 = r > R_1[/tex]
[tex]V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{1.00} \frac{1.00*10^{-6}}{1.00} ] = 26.79 *10^3 V[/tex]
Considering f
[tex]r = 0.700 m \ , R_2 > r > R_1[/tex]
[tex]V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.700} \frac{1.0*10^{-6}}{1.00} ] = 34.67 *10^3 V[/tex]
Considering g
[tex]r =0.500\m , R_1 >r =R_1[/tex]
[tex]V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{r} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V[/tex]
Considering h
[tex]r =0.200\m , R_1 >R_1>r[/tex]
[tex]V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V[/tex]
Considering i
[tex]r =0\ m \ , R_1 >R_1>r[/tex]
[tex]V = \frac{1}{4\pi \epsilon_0} [\frac{q_1}{R_1} +\frac{q_2}{R_2} ] = 8.99*10^9 * [\frac{2.00*10^{-6}}{0.500} \frac{1.0*10^{-6}}{1.00} ] = 44.95 *10^3 V[/tex]
