An economist is studying the job market in Denver area neighborhoods. Let x represent the total number of jobs in a given neighborhood, and let y represent the number of entry-level jobs in the same neighborhood. A sample of six Denver neighborhoods gave the following information (units in hundreds of jobs).

x 13 34 52 28 50 25

y 1 4 5 5 9 3

Complete parts (a) through (e), given Σx = 202, Σy = 27, Σx2 = 7938, Σy2 = 157, Σxy = 1074, and r ≈ 0.821.
a. Verify the given sums Σx, Σy, Σx2, Σy2, Σxy, and the value of the sample correlation coefficient r.
b. Find x, and y. Then find the equation of the least-squares line y = a + bx. (Round your answers for x and yto two decimal places. Round your answers for a and b to three decimal places.)
c. Find the value of the coefficient of determination r2. What percentage of the variation in y can be explainedby the corresponding variation in x and the least-squares line?
d. For a neighborhood with x = 34 hundred jobs, how many are predicted to be entry level jobs?

Respuesta :

Answer:

a) [tex] \sum X = 13+34+52+28+50+25 =202 [/tex]

[tex]\sum Y = 1+4+5+5+9+3= 27 [/tex]

[tex] \sum X^2 = 13^2+34^2+52^2+28^2+50^2+25^2 = 1074[/tex]

And in order to calculate the correlation coefficient we can use this formula:  

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]  

[tex]r=\frac{6(1074)-(202)(27)}{\sqrt{[6(7938) -(202)^2][6(157) -(202)^2]}}=0.821[/tex]  

b) [tex]m=\frac{165}{1137.33}=0.145[/tex]  

Nowe we can find the means for x and y like this:  

[tex]\bar x= \frac{\sum x_i}{n}=\frac{202}{6}=33.67[/tex]  

[tex]\bar y= \frac{\sum y_i}{n}=\frac{27}{6}=4.5[/tex]  

And we can find the intercept using this:  

[tex]b=\bar y -m \bar x=4.5-(0.145*33.67)=-0.384[/tex]  

So the line would be given by:  

[tex]y=0.145 x -0.384[/tex]  

c) The coefficient of variation is given by:

[tex] r^2 = 0.821^2 = 0.674[/tex]

And we can conclude that 67.4% of the variation in y can be explainedby the corresponding variation in x and the least-squares line

d) For this case we just need to replade x = 34 into our model and we got:

[tex]y=0.145*34 -0.384= 3.097[/tex]  

Step-by-step explanation:

For this case we have the following data:

x 13 34 52 28 50 25

y 1 4 5 5 9 3

Part a

[tex] \sum X = 13+34+52+28+50+25 =202 [/tex]

[tex]\sum Y = 1+4+5+5+9+3= 27 [/tex]

[tex] \sum X^2 = 13^2+34^2+52^2+28^2+50^2+25^2 = 1074[/tex]

And in order to calculate the correlation coefficient we can use this formula:  

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]  

[tex]r=\frac{6(1074)-(202)(27)}{\sqrt{[6(7938) -(202)^2][6(157) -(202)^2]}}=0.821[/tex]  

Part b

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]  

Where:  

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]  

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]  

With these we can find the sums:  

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=7938-\frac{202^2}{6}=1137.33[/tex]  

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i){n}}=1074-\frac{202*27}{6}=165[/tex]  

And the slope would be:  

[tex]m=\frac{165}{1137.33}=0.145[/tex]  

Nowe we can find the means for x and y like this:  

[tex]\bar x= \frac{\sum x_i}{n}=\frac{202}{6}=33.67[/tex]  

[tex]\bar y= \frac{\sum y_i}{n}=\frac{27}{6}=4.5[/tex]  

And we can find the intercept using this:  

[tex]b=\bar y -m \bar x=4.5-(0.145*33.67)=-0.384[/tex]  

So the line would be given by:  

[tex]y=0.145 x -0.384[/tex]  

Part c

The coefficient of variation is given by:

[tex] r^2 = 0.821^2 = 0.674[/tex]

And we can conclude that 67.4% of the variation in y can be explainedby the corresponding variation in x and the least-squares line

Part d

For this case we just need to replade x = 34 into our model and we got:

[tex]y=0.145*34 -0.384= 3.097[/tex]