A steady, incompressible, two-dimensional (in the x-y plane) velocity field is given by V→=(0.523−1.88x+3.94y)i→+(−2.44+1.26x+1.88y)j→ . Calculate the acceleration at the point (x,y) = (-1, 3.5).

Respuesta :

Answer:

[tex]\vec a = -19,096 \cdot i + 25.818 \cdot j[/tex]

Explanation:

According to the definition of the derivative of vectorial sum and the physical concept of acceleration, the required expression is:

[tex]\vec a = \frac{d v_{x}}{dt} \cdot i + \frac{d v_{y}}{dt} \cdot j + \frac{d v_{z}}{dt} \cdot k[/tex]

[tex]\vec a = (-1.88\cdot \frac{dx}{dt} + 3.94 \cdot \frac{dy}{dt})\cdot i + (1.26 \cdot \frac{dx}{dt} + 1.88 \cdot \frac{dy}{dt})\cdot j[/tex]

Where:

[tex]\frac{dx}{dt} = 0.523 - 1.88 \cdot x + 3.94 \cdot y\\\frac{dy}{dt} = - 2.44 + 1.26 \cdot x + 1.88 \cdot y\\[/tex]

The acceleration at given point is calculated as follows:

[tex]\frac{dx}{dt} = 16.193\\\frac{dy}{dt} = 2.88[/tex]

[tex]\vec a = -19,096 \cdot i + 25.818 \cdot j[/tex]