Respuesta :
Answer:
Approximately [tex]2.25\; \rm m \cdot s^{-1}[/tex].
Explanation:
The velocity of an object is the rate of change in its displacement.
If it took time [tex]\Delta t[/tex] for an object to move from position [tex]x_1[/tex] to [tex]x_2[/tex], then its average velocity would be
[tex]\begin{aligned} \overline{v} &=\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{\Deltat t}\end{aligned}[/tex].
In this case,
- [tex]\Delta t = 4.00\; \rm s[/tex].
- [tex]x_1 = 15.0\; \rm m[/tex].
- [tex]x_2 = 6.00\; \rm m[/tex].
[tex]\begin{aligned} \overline{v} &=\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{\Deltat t} \\&= \frac{6.00\; \rm m - 15.0\; \rm m}{4.00\; \rm s} \approx -2.25\; \rm m \cdot s^{-1} \end{aligned}[/tex].
Note that in this case, since [tex]x_1 > x_2[/tex], the value of [tex]\overline{v}[/tex] is negative.