If a metallic wire of cross sectional area 3.0 ´ 10-6 m2 carries a current of 6.0 A and has a mobile charge density of 4.24 ´ 1028 carriers/m3, what is the average drift velocity of the mobile charge carriers? (charge value = 1.6 ´ 10-19 C)

Respuesta :

Answer:

The drift velocity is [tex]v_d=2.9\times 10^{-4}\ m/s.[/tex]

Explanation:

Given :

Area of metallic wire, [tex]A = 3\times 10^{-6}\ m^2[/tex].

Current through wire , [tex]I=6 \ A.[/tex]

Mobile charge density , [tex]n=4.24\times 10^{28} \ carriers/m^3.[/tex]

Charge value , [tex]e=1.6\times 10^{-19}\ C.[/tex]

We need to find drift velocity , [tex]v_d.[/tex]

Now, we know :

[tex]I=neAv_d[/tex]

Therefore, [tex]v_d=\dfrac{I}{neA}[/tex]

Putting all given values in above equation we get,

[tex]v_d=\dfrac{6}{4.24\times 10^{28}\times 1.6\times 10^{-19} \times 3 \times 10^{-6}}[/tex]

[tex]v_d=2.9\times 10^{-4}\ m/s.[/tex]

Hence, this is the required solution.

The drift velocity of the mobile charge carriers is  [tex]2.9*10^{-4}m/s[/tex]

Drift velocity :

It is a velocity gained by the free electrons of a conductor, with which the electrons get drifted under the influence of an electric field.

Drift velocity is the average velocity attained by charged particles in a material due to an electric field.

It is given by formula,

                           [tex]v_{d}=\frac{I}{neA}[/tex]

Where,

  • [tex]I[/tex] is current
  • [tex]A[/tex] is cross section area
  • [tex]n[/tex] is mobile charge density
  • [tex]e[/tex] is charge on electron

Given that, [tex]I=6A,A=3*10^{-6}m^{2} ,n=4.24*10^{28} ,e=1.6*10^{-19}C[/tex]

Substitute all values in above formula.

                [tex]v_{d}=\frac{6}{4.24*10^{28}*1.6*10^{-19} *3*10^{-6} } \\\\v_{d}=2.9*10^{-4}m/s[/tex]

Learn more about the drift velocity here:

https://brainly.com/question/4269562?referrer=searchResults