Respuesta :
Answer:
Part(a): The required change in angular displacement will be [tex]3.33~rad~s^{-1}[/tex].
Part(b): The angular displacement will be increased by a factor of 2.
Explanation:
If [tex]\omega_{i}[/tex] , [tex]\omega_{f}[/tex], [tex]\alpha[/tex] and [tex]\delta \theta[/tex] represents the initial angular velocity, the final angular velocity , the angular acceleration and the change of angular displacement s, then from angular kinematic equation, we can write
[tex]\omega_{f}^{2} = \omega_{i}^{2} + 2~\alpha~\delta \theta[/tex]
Part(a):
Given, [tex]\omega_{i} = 0.057~rad~s^{-1}[/tex], [tex]\omega_{f} = 2.0~rad~s^{-1}[/tex] and [tex]\alpha = 0.60~rad~s^{-2}[/tex]. Substituting ll the values in the above equation, we have
[tex]&& 2^{2} = 0.057^{2} + 2 \times 0.6 \times \delta \theta\\&or,& \delta \theta = \dfrac{4 - 0.057^{2}}{1.2} = 3.33~rad[/tex]
So the angle through which the parts rotates before reaching the final speed is [tex]3.33~rad[/tex].
Part(b):
Given, [tex]\omega_{i}^{new} = 2~\omega_{i}[/tex], [tex]\omega_{f}^{new} = 2~\omega_{f}[/tex] and [tex]\alpha^{new} = \alpha[/tex]. So,
[tex]&& (\omega_{f}^{new})^{2} = (\omega_{i}^{new})^{2} + 2~\alpha^{new} \delta \theta^{new}\\&or,& \delta \theta^{new} = \dfrac{( (\omega_{f}^{new})^{2} - (\omega_{i}^{new})^{2})}{2 \alpha}\\&or,& \delta \theta^{new} = \dfrac{4(\omega_{f}^{2} - \omega_{i}^{2})}{2~\alpha}\\&or,& \delta \theta^{new} = 2 \delta \theta[/tex]
Therefore, the angular displacement will be changes by a factor of 2.