Respuesta :

Answer:

[tex]\frac{3\pi}{2}[/tex].

Step-by-step explanation:

The given expression is

[tex]2\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)[/tex]

It can be rewritten as

[tex]2\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)[/tex]

[tex]2\left [\pi-\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)\right][/tex]            [tex][\because \cos^{-1}(-x)=\pi-\cos^{-1}(x), x\in [-1,1]][/tex]

[tex]2\left [\pi-\cos^{-1}\left(\cos \frac{\pi}{4}\right)\right][/tex]

[tex]2\left [\pi-\frac{\pi}{4}\right][/tex]

[tex]2\left [\frac{4\pi-\pi}{4}\right][/tex]

[tex]\frac{3\pi}{2}[/tex]

Hence, the exact value of given expression is [tex]\frac{3\pi}{2}[/tex].

Answer:

the choices are:

pi/3

pi/6

pi/4

pi/2

the answer is:

pi/4

Step-by-step explanation: