Consider the given rectangle with heightequals4timeswidth. Let x be the width of the rectangle. Write an expression for the​ perimeter, P. If the area is 49 square​ feet, write this fact as an equation.

Respuesta :

Answer:

The expression for the perimeter P is [tex]P=\frac{784+h^2}{2h}[/tex] feet.

Area=49=lx square feet ( here [tex]x=\frac{h}{4}[/tex] )

Step-by-step explanation:

Given that rectangle with height equals 4times width.

It can be written as

[tex]h=4\times width[/tex]

Let x be the width of the given rectangle

Therefore [tex]h=4\times x[/tex]

[tex]h=4x[/tex]

[tex]\frac{h}{4}=x[/tex]

Rewritting the above equation we get

[tex]x=\frac{h}{4}[/tex]

To write an expression for the perimeter P of the given rectangle :

Also given that area of the rectangle is 49 square feet.

Area=49 square feet.

We know area of rectangle = lw square units.

Therefore area=49=lx square feet ( here area=49 and w=[tex]x=\frac{h}{4}[/tex] )

Rewritting we get

lx=49 square feet.

[tex]l=\frac{49}{x}[/tex]

[tex]=\frac{49}{\frac{h}{4}}[/tex]

[tex]l=\frac{49\times 4}{h}[/tex]

[tex]l=\frac{196}{h}[/tex] feet

Perimeter P[tex]=2(l+w)[/tex] units

[tex]P=2(\frac{196}{h}+\frac{h}{4})[/tex]

[tex]P=\frac{2(196)}{h}+\frac{2(h)}{4}[/tex]

[tex]=\frac{392}{h}+\frac{h}{2}[/tex]

[tex]=\frac{392(2)+h^2}{2h}[/tex]

[tex]P=\frac{784+h^2}{2h}[/tex] feet.