A particular household uses a 2.2-kW heater 1.5 h/day ("on" time), four 75-W lightbulbs 5.0 h/day , a 2.5-kW electric stove element for a total of 1.0 h/day , and miscellaneous power amounting to 2.3 kWh/day.

a. If electricity costs $0.105 per kWh, what will be their monthly bill (30 days)?

b. How much coal (which produces 7500 kcal/kg) must be burned by a 37 % -efficient power plant to provide the yearly needs of this household?

Respuesta :

Answer:

Explanation:

Energy consumed per day = (2.2 x 1.5 + 4 x .075 x 5 + 2.5 x 1 + 2.3 )kWh

= 3.3 + 1.5 + 2.5 + 2.3

= 9.6 kWh

Energy consumed in a month = 9.6 x 30

= 288 kWh

cost = 288 x .105

= $ 30.24

b ) 288 kWh = 288 x 60 kW

= (288 x 60)/ 4.2 kcal

= 4114.28 kcal

coal required per month = ( 4114.28 / 7500) x (1 / .37 )

= 1.48 kg

coal required per month= 1.48 x 12

=17.76  kg

=

Answer:

a) [tex]TC=\$ 26.69625[/tex]

b) [tex]m=945.998\ kg[/tex]

Explanation:

Given:

power usage by the heater, [tex]P_h=2.2\ kW[/tex]

duration of operating the heater, [tex]t_h=1.5\ h.day^{-1}[/tex]

power usage by the light bulb, [tex]P_l=0.075\ kW[/tex]

duration of operating the light bulb, [tex]t_l=5\ h.day^{-1}[/tex]

power usage by the electric stove, [tex]P_s=2.5\ kW[/tex]

duration of operating the stove, [tex]t_s=1\ h.day^{-1}[/tex]

miscellaneous power usage each day, [tex]\dot P_m=2.3\ kWh.day^{-1}[/tex]

a)

Given rate of electricity, [tex]C=\$ $0.105\ kWh^{-1}[/tex]

Now the total power consumption each day:

[tex]P_D=\dot P_m+P_s.t_s+P_l.t_l+P_h.t_h[/tex]

[tex]P_D=2.3+2.5\times 1+0.075\times 5+2.2\times 1.5[/tex]

[tex]P_D=8.475\ kWh.day^{-1}[/tex]

Total power consumption in one month:

[tex]P_M=P_D\times 30[/tex]

[tex]P_M=8.475\times 30[/tex]

[tex]P_M=254.25\ kWh[/tex]

Total monthly cost, [tex]TC=P_M\times C[/tex]

[tex]TC=254.25\times 0.105[/tex]

[tex]TC=\$ 26.69625[/tex]

b)

calorific value of coal, [tex]CV=7500\time 10^3\ cal.kg^{-1}=3.138\times 10^7\ J.kg^{-1}[/tex]

efficiency of the powerplant, [tex]\eta=0.37[/tex]

The energy output of the powerplant:

[tex]E_o=0.37\times CV[/tex]

[tex]E_o=0.37\times 31380000[/tex]

[tex]E_o=1.16106\times 10^7\ J[/tex]

The yearly power consumption at this rate will be:

[tex]P_Y=P_M\times 12[/tex]

[tex]P_Y=254.25\times 12[/tex]

[tex]P_Y=3051\ kWh[/tex]

[tex]P_Y=3051\times 10^3\times3600\ J[/tex]

Now the mass of coal required:

[tex]m=\frac{P_Y}{E_o}[/tex]

[tex]m=\frac{3051000\times 3600}{1.16106\times 10^7}[/tex]

[tex]m=945.998\ kg[/tex]