Answer:
a) 7.627144987
b) 5.605222315
c) 20.04031392
d) 10.17644951
Explanation:
We need to solve for years starting from the future value of a lump sum formula:
[tex]PV(1+r)^n=FV\\[/tex]
We use logarithmics properties and solve:
[tex](1+r)^n=FV/PV\\\\log_{1+r}(FV/PV) = n\\\\n = \frac{log FV/PV}{log (1+r)}[/tex]
a)
log(1655/800)/log1.1 = n
7.627144987
b)
log(4250/2491)/log1.08 = n
5.605222315
c)
log(392620/33905)/log1.13 = n
20.04031392
d)
log(214844/33600)/log1.20 = n
10.17644951