Answer:
[tex]s_{f} = 14.312 m[/tex]
Explanation:
Since the particle is experimenting a constant acceleration, the displacement can be found by using this formula:
[tex]v_{f}^{2} = v_{o}^{2} + 2 \cdot a \cdot (s_{f} - s_{o})[/tex]
Since [tex]s_{o} = 0 m[/tex], the equation is simplified to this form:
[tex]v_{f}^{2} = v_{o}^{2} + 2 \cdot a \cdot s_{f}[/tex]
Then, the displacement is now isolated:
[tex]s_{f} = \frac{v_{f}^{2}-v_{o}^{2}}{2 \cdot a}[/tex]
Terms are replaced herein:
[tex]s_{f} = \frac{(12.2 \frac{m}{s})^{2}-(6.1 \frac{m}{s})^{2}}{2 \cdot (3.90 \frac{m}{s^{2}}) } \\s_{f} = 14.312 m[/tex]