Respuesta :
Answer:
The rate of reaction :
[tex]R\times 3=-\frac{d[O_2]}{dt}[/tex]
[tex]R\times 2=\frac{d[O_3]}{dt}[/tex]
[tex]1.073\times 10^{-5} mol/Ls[/tex] is the rate of appearance of an ozone.
Explanation:
The rate of the reaction is defined as change in in the concentration of any one of the reactants or products per unit time.
[tex]3O_2 (g)\rightarrow 2O_3 (g)[/tex]
a) Rate of the reaction = R
[tex]R=\frac{-1}{3}\frac{d[O_2]}{dt}=\frac{1}{2}\frac{d[O_3]}{dt}[/tex]
Rate of the disappearance of the oxygen gas:[tex]-\frac{d[O_2]}{dt}[/tex]
[tex]R\times3=-\frac{d[O_2]}{dt}[/tex]
Rate of the appearance of the ozone gas:[tex]\frac{d[O_3]}{dt}[/tex]
[tex]R\times 2=\frac{d[O_3]}{dt}[/tex]
b)Rate of the disappearance of the oxygen gas:[tex]-\frac{d[O_2]}{dt}=1.61\times 10^{-5} mol/L s[/tex]
[tex]R\times3=-\frac{d[O_2]}{dt}[/tex]
[tex]R=\frac{1.61\times 10^{-5} mol/L s}{3}=5.367\times 10^{-6} mol/L s[/tex]
Rate of the appearance of the ozone gas:[tex]\frac{d[O_3]}{dt}[/tex]
[tex]R\times 2=\frac{d[O_3]}{dt}[/tex]
[tex]5.367\times 10^{-6} mol/L s\times 2=\frac{d[O_3]}{dt}[/tex]
[tex]\frac{d[O_3]}{dt}=1.073\times 10^{-5} mol/Ls[/tex]
[tex]1.073\times 10^{-5} mol/Ls[/tex] is the rate of appearance of an ozone.