Respuesta :
Answer: The energy of the complex is [tex]2.72\times 10^2kJ[/tex]
Explanation:
To calculate the energy of the complex, we use the equation given by Planck which is:
[tex]\Delta E=\frac{N_Ahc}{\lambda}[/tex]
where,
[tex]\lambda[/tex] = Wavelength of the complex = [tex]440nm=4.40\times 10^{-7}m[/tex] (Conversion factor: [tex]1m=10^9nm[/tex] )
h = Planck's constant = [tex]6.624\times 10^{-34}Js[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]N_A[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]
[tex]\Delta E[/tex] = energy of the complex
Putting values in above equation, we get:
[tex]\Delta E=\frac{6.022\times 10^{23}\times 6.624\times 10^{-34}\times 3\times 10^8}{4.40\times 10^{-7}}\\\\\Delta E=2.72\times 10^{5}J=2.72\times 10^2kJ[/tex]
Conversion factor used: 1 kJ = 1000 J
Hence, the energy of the complex is [tex]2.72\times 10^2kJ[/tex]
Answer:
The complex energy is option(C) [tex]2.72\times 10^{2} kJ/mol[/tex].
Explanation:
To calculate the energy of the complex, by using Planck's equation.
[tex]$\Delta E=\frac{N_{A} h c}{\lambda}$[/tex]
Where, [tex]\lambda=$ Wavelength of the complex $=440 \mathrm{~nm}=4.40 \times 10^{-7} \mathrm{~m}$[/tex]
h = Planck's constant = [tex]$6.624 \times 10^{-34} J s$[/tex].
c = speed of light = [tex]$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$[/tex].
[tex]N_A[/tex]= Avogadro's number = [tex]6.022\times 10^{23}[/tex].
[tex]\Delta[/tex] E = energy of the complex.
Substitute all the required values in the equation:
[tex]$\Delta E=\frac{6.022 \times 10^{23} \times 6.624 \times 10^{-34} \times 3 \times 10^{8}}{4.40 \times 10^{-7}}$[/tex]
[tex]$\Delta E=2.72 \times 10^{5} J=2.72 \times 10^{2} k J$[/tex].
The energy of the complex is [tex]2.72\times 10^{2} kJ/mol[/tex].
Learn more about energy of the complex, refer:
- https://brainly.com/question/15060876.