Respuesta :
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
0.11 rad/s
Explanation:
Given that,
kite is 100 ft high
and moves horizontally at 7 ft/s
Total string let out =200 ft
String length(l), vertical(y) & Horizontal(x) distance of kite will form a right angle triangle
[tex]L^2 = y^2 + x^2[/tex]
differentiate both side
[tex]= 2y\frac{dy}{dt} + 2x\frac{dx}{dt} \\y\frac{dy}{dt} = -x\frac{dx}{dt} \\100\frac{dy}{dt} = \sqrt{3} * 100 * \frac{dx}{dt} \\\frac{dy}{dt} = 11\sqrt{3}[/tex]
Now Lcosθ = x
diferentiate
[tex]Lsin\theta * \frac{d\theta }{dt} = \frac{dx}{dt} \\200 * \frac{100}{200} * \frac{d\theta}{dt} = 11\\\frac{d\theta }{dt } = 0.11 rad/s[/tex]