Calculate the activity of KI, x, in the following electrochemical cell if the potential is +0.350 V. Ag|AgCl(s), NaCl(aq,a=0.1)||KI(aq,a=x), I2(s) | Pt

Respuesta :

Answer: The activity KI for the given electrochemical cell is 0.0310

Explanation:

The given chemical cell follows:

[tex]Ag|AgCl(s),NaCl(aq.,a=0.1)||KI(aq,a=x)|I_2(s)|Pt[/tex]

Oxidation half reaction: [tex]Ag(s)+Cl^-(aq.,)\rightarrow AgCl(s)+e^-;E^o_{AgCl/Cl^-}=0.22V[/tex]

Reduction half reaction: [tex]\frac{1}{2}I_2(s)+e^-\rightarrow I^-(aq.);E^o_{I_2/I^-}=0.54V[/tex]

Net cell reaction: [tex]Ag(s)+Cl^-(aq.)+\frac{1}{2}I_2(s)\rightarrow AgCl(s)+I^-(aq.)[/tex]

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=0.54-(0.22)=0.32V[/tex]

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log \frac{a_{I^-}}{a_{Cl^-}}[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = 0.350 V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.32 V

n = number of electrons exchanged = 1

[tex]a_{Cl^-}=0.1[/tex]

[tex]a_{I^-}=x[/tex]

Putting values in above equation, we get:

[tex]0.350=0.32-\frac{0.059}{1}\times \log(\frac{x}{0.1})[/tex]

[tex]x=0.0310[/tex]

Hence, the activity KI for the given electrochemical cell is 0.0310