Suppose that you have a 680 Ω, a 720 Ω and a 1.20 kΩ resistor. (a) What is the maximum resistance you can obtain by combining these? (b) What is the minimum resistance you can obtain by combining these?

Respuesta :

Explanation:

As the given data is as follows.

    [tex]R_{1} = 680 \ohm[/tex] ohm[tex]\ohm[/tex],    [tex]R_{2} = 720 \ohm[/tex] ohm,

   [tex]R_{3} = 1.2 k\ohm[/tex] = 1200 [tex]\ohm[/tex]   (as 1 k ohm = 1000 m)

(a)   We will calculate the maximum resistance by combining the given resistances as follows.

      Max. Resistance = [tex]R_{1} + R_{2} + R_{3}[/tex]

                                  = [tex](680 + 720 + 1200) \ohm[/tex] ohm

                                  = 2600 ohm

or,                               = 2.6 [tex]k\ohm[/tex] ohm

Therefore, the maximum resistance you can obtain by combining these is 2.6 [tex]k\ohm[/tex] ohm.

(b)   Now, the minimum resistance is calculated as follows.

      Min. Resistance = [tex]\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}[/tex]

                                 = [tex]\frac{1}{680} + \frac{1}{720} + \frac{1}{1200}[/tex]

                                 = [tex]3.683 \times 10^{-3}[/tex] ohm

Hence, we can conclude that minimum resistance you can obtain by combining these is [tex]3.683 \times 10^{-3}[/tex] ohm.