Answer:
(a) [tex]x_{sys}=17.55m[/tex]
(b) [tex]v_{sys}=6.833m/s[/tex]
Explanation:
Given data
950 kg automobile starts from rest with constant acceleration 2.6m/s²
1950 kg truck, traveling at a constant speed of 6.8 m/s
Automobile position
[tex]x_{a}=1/2at^{2}\\x_{a}=1/2(2.6m/s^{2})(3)^{2}\\x_{a}=11.7m[/tex]
Velocity
[tex]v_{a}=at\\v_{a}=(2.3m/s^{2})(3.0s)\\v_{a}=6.9m/s[/tex]
Truck Position
[tex]x_{t}=vt\\x_{t}=(6.8m/s)(3.0s)\\x_{t}=20.4m[/tex]
Velocity of truck remain constant vt=6.8m/s
For Part (a)
The center of mass for Automobile Truck system:
[tex]x_{sys}=\frac{m_{a}x_{a}+m_{t}x_{t}}{m_{sys}}\\x_{sys}=\frac{(950kg*11.7m)+(1950kg*20.4m)}{950kg+1950kg}\\ x_{sys}=17.55m[/tex]
For Part (b)
The velocity of center of mass for Automobile Truck system:
[tex]v_{sys}=\frac{m_{a}v_{a}+m_{t}v_{t}}{m_{sys}}\\v_{sys}=\frac{950*6.9+1950*6.8}{950+1950}\\ v_{sys}=6.833m/s[/tex]