Explanation:
Given that,
Refractive index of glass, n₁ = 1.65
Refractive index of liquid, n₂ = 1.22
(a) We need to find the angle of refraction for the angle of incidence of 60°. It can be calculated using Snells law as :
[tex]n_2\sin i=n_1\sin r[/tex]
r is the angle of refraction
[tex]\sin r=\dfrac{n_2\sin i}{n_1}[/tex]
[tex]\sin r=\dfrac{1.22\sin (60)}{1.65}[/tex]
[tex]r=39.81^{\circ}[/tex]
(b) [tex]n_2\sin i=n_1\sin r[/tex]
r is the angle of refraction
Here, i = 45 degrees
[tex]\sin r=\dfrac{n_2\sin i}{n_1}[/tex]
[tex]\sin r=\dfrac{1.22\sin (45)}{1.65}[/tex]
[tex]r=31.52^{\circ}[/tex]
(c) [tex]n_2\sin i=n_1\sin r[/tex]
r is the angle of refraction
Here, i = 30 degrees
[tex]\sin r=\dfrac{n_2\sin i}{n_1}[/tex]
[tex]\sin r=\dfrac{1.22\sin (30)}{1.65}[/tex]
[tex]r=21.69^{\circ}[/tex]
Hence, this is the required solution.