contestada

Calculate the ratio of the kinetic energy of an electron to that of a proton if their wavelengths are equal. Assume that the speeds are nonrelativistic.

Respuesta :

Answer:

the ratio of the kinetic energy of an electron to that of a proton if their wavelengths are equal is 1835.16 .

Explanation:

We know, wavelength is expressed in terms of Kinetic Energy by :

[tex]\lambda=\dfrac{h}{\sqrt{2mE}}[/tex]

Therefore , [tex]E=\dfrac{h^2}{2 \lambda^2 m}[/tex]

It is given that both electron and proton have same wavelength.

Therefore,

[tex]E_e=\dfrac{h^2}{2 \lambda^2 m_e}[/tex]   .... equation 1.

[tex]E_p=\dfrac{h^2}{2 \lambda^2 m_p}[/tex]   .... equation 2.

Now, dividing equation 1 by 2 .

We get ,

[tex]\dfrac{E_e}{E_p}=\dfrac{\dfrac{h^2}{2 \lambda^2 m_e}}{\dfrac{h^2}{2 \lambda^2 m_p}}\\\\\\\dfrac{E_e}{E_p}=\dfrac{m_p}{m_e}[/tex]

Putting value of mass of electron = [tex]9.1\times 10^{-31}\ kg[/tex] and mass of proton = [tex]1.67\times 10^{-27}\ kg.[/tex]

We get :

[tex]\dfrac{E_e}{E_p}=\dfrac{1.67\times 10^{-27}\ kg}{9.1\times 10^{-31}\ kg}=1835.16[/tex]

Hence , this is the required solution.

Answer:

[tex]\frac{KE_e}{KE_p}=1835.16[/tex]

Explanation:

Given that the wavelengths of electron and proton are equal at non- relativistic speed.

From De-Broglie wave equation we know that:

[tex]\lambda =\frac{h}{p}[/tex]

where:

[tex]\lambda=[/tex] wavelength

[tex]h=[/tex] Planck's constant

[tex]p=[/tex] linear momentum of  the particle

Then'

[tex]\lambda_e=\lambda_p[/tex]

[tex]\frac{h}{p_e} =\frac{h}{p_p}[/tex]

[tex]\frac{1}{m_e.v_e} =\frac{1}{m_p.v_p}[/tex] ..................................(1)

we've mass of electron, [tex]m_e=9.1\times 10^{-31}\ kg[/tex]

mass pf proton, [tex]m_p=1.67\times 10^{-27}\ kg[/tex]

Now,

kinetic energy of electron:

[tex]KE_e=\frac{1}{2} m_e.v_e^2[/tex]

kinetic energy of proton:

[tex]KE_p=\frac{1}{2}m_p.v_p^2[/tex]

So,

[tex]\frac{KE_e}{KE_p}=\frac{m_e.v_e^2}{m_p.v_p^2}[/tex]

from eq. (1)

[tex]\frac{KE_e}{KE_p}=\frac{m_e}{m_p} \times \frac{m_p^2}{m_e^2}[/tex]

[tex]\frac{KE_e}{KE_p}= \frac{m_p}{m_e}[/tex]

[tex]\frac{KE_e}{KE_p}=\frac{1.67\times 10^{-27}}{9.1\times 10^{-31}}[/tex]

[tex]\frac{KE_e}{KE_p}=1835.16[/tex]