If P(3, 2) and Q(7, 10) are the endpoints of the diameter of a circle, what is the area of the circle in square units? ​ a. b. 20π c. 80π d.

Respuesta :

Answer:

The correct answer is option (b).

Therefore the area of the circle is   [tex]=20 \pi[/tex]  square units

Step-by-step explanation:

Given that , P(3,2) and Q(7,10) are the endpoint of the diameter of a circle.

To find out the length of diameter we use the distance formula.

If (x₁,y₁) and (x₂,y₂) are point.

Then the distance between them is = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Here x₁=3,y₁=2,x₂ = 7,y₂=10.

The length of the diameter is = [tex]\sqrt{(7-3)^2+(10-2)^2}[/tex]

                                                  [tex]=\sqrt{80}[/tex] units.

Radius of a circle [tex]=\frac{Dameter}{2}[/tex]

Therefore the the radius of the circle is [tex]=\frac{\sqrt{80}}{2}[/tex] units [tex]=\frac{2\sqrt{20} }{2}[/tex]  units [tex]=\sqrt{20}[/tex] units

The area of a circle = [tex]\pi r^2[/tex]

Therefore the area of the circle is [tex]=\pi (\sqrt{20})^2[/tex]

                                                        [tex]=20 \pi[/tex]  square units