Answer:
[tex]F=8.98\times10^12 N[/tex]
Explanation:
Mass of the sun = mass of the neutron star (M) [tex]=1.99\times10^30[\tex] kg
Diameter of a neutron star (D) = 20 km = 20000 m
Radius of the neutron star (R) = 10,000 m
Mass of the person on earth (m) = 665 N
Acceleration due to gravity on earth (g) = 9.81 m/s^2
Universal gravitational constant is given as (G) [tex]=6.67\times10^{-11} [/tex] N.m^2/kg^2.
Weight of the Earth is given by W
W=mg
[tex]\Rightarrow m=\frac{W}{g}=\frac{665}{9.81}[/tex]
m=67.68 kg.
Now weight of the neutron star can be calculated as
[tex]W=F=\frac{GMm}{r^2}=\frac{6.67\times10^{-11}\times1.99\times10^{30}(67.68)}{10000^2}
[tex]F=8.98\times10^12 N[/tex]