A particle confined to rotate on a sphere is a very good approximation for the rotations ofdiatomic molecules. Using the equation for the energy of a particle rotating on a sphere,compute the equilibrium bond length of H137I, given that the rotational energy in the`= 5state is 8.952×10−21J. HINT: You will need to use the reduced mass.

Respuesta :

Answer:

the equilibrium bond length of H137I is [tex]4.75*10^{-12}m[/tex]

Explanation:

The quantum state has a rotational energy which can be expressed mathematically

                  [tex]E_J =BJ(J+1)[/tex]

Here,

               B is the rotational constant given as

                                [tex]B = \frac{h^2}{8r^2I} \ Joules[/tex]

      We are given from the question that [tex]E_{J=5} = 8.952*10^{-21}J[/tex]

   Substituting we have

                  [tex]8.952*10^{-21}kgm^2s^{-2} = B * 5(5+1)[/tex]

                  [tex]8.952*10^{-21}kgm^2s^{-2} =\frac{h^2}{8r^2I} *30[/tex]

 Where,

          h is plank constant

          r is radius

          I is moment of inertia  

                  [tex]8.952*10^{-21}kgm^2s^{-2} = \frac{6.626*10^{-34}kgm^2s^{-2} }{8(3.142)^2*I} *30[/tex]

     Making [tex]I[/tex] the subject

                   [tex]I = \frac{(6.626*10^{-34})^2 kgm^2s^{-2}}{8*(3.142)^2 * 8.952*10^{-21} kgm^2s^{-2}}[/tex]

                     [tex]= 3.701*10^{-47}kgm^2[/tex]

  The moment of inertia = Reduced mass × [tex]\lambda^2[/tex]

  [tex]\lambda \ is \ bond \ length[/tex]

   [tex]Formula \ for\ reduced \ mass =\frac{m_1m_2}{\frac{1}{m_1} +\frac{1}{m_2} }[/tex]

      [tex]mass =\frac{molar mass}{Avogadro's number}[/tex]

            Therefore

                         [tex]m_1 = \frac{1}{6.022*10^{23}}[/tex]

                         [tex]m_2 = \frac{137}{6.022*10^{23}}[/tex]

                     [tex]I = \frac{\frac{1}{6.022*10^{23}} *\frac{137}{6.022*10^{23}} }{\frac{1+137}{6.022*10{23}} } * \lambda^2[/tex]

Making [tex]\lambda[/tex] the subject of the formula

                 [tex]\lambda^2 = \frac{3.701*10^{-47}}{1.64*10^{-24}}m^2[/tex]

                  [tex]\lambda = 4.75 *10^{-12} m[/tex]