Answer:
The value of the Michaelis–Menten constant is 0.0111 mM.
Explanation:
Michaelis–Menten 's equation:
[tex]v_o=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}[/tex]
[tex]V_{max}=k_{cat}[E_o][/tex]
Where:
[tex]v_o[/tex] = rate of formation of products
[S] = Concatenation of substrate
[tex][K_m][/tex] = Michaelis constant
[tex]V_{max}[/tex] = Maximum rate achieved
[tex]k_{cat}[/tex] = Catalytic rate of the system
[tex][E_o][/tex] = Initial concentration of enzyme
On substituting all the given values
We have :
[tex]\frac{v_o}{V_{max}}=0.90[/tex]
[S] = 0.10 mM
[tex]\frac{v_o}{V_{max}}=\frac{[S]}{(K_m+[S])}[/tex]
[tex]0.90=\frac{0.10 mM}{K_m+0.10 M}[/tex]
[tex]K_m=0.0111 mM[/tex]
The value of the Michaelis–Menten constant is 0.0111 mM.