Determine whether the integral converges or diverges; if it converges, evaluate. (If the quantity diverges, enter DIVERGES. Do not use the [infinity] symbol in your answer.) [infinity] dx x4 + 9x2 1

Respuesta :

Answer:

It converges

Step-by-step explanation:

dx/dy = x∧4 + 9x∧21

f(x) = ∫(x∧4 + 9x∧21)dy        0  > f(x) > ∞

= x∧5/5 + 9x∧22/22 + c  

     x = ∞ and x = 0

∴ c = 1 /5 +  9/22 = 27/22

Answer:

The integral DIVERGES

Step-by-step explanation:

∫(x^4 + 9x^21)dx from x = [0,Infinity]

Evaluating the integral, we have

∫(x^4)dx + 9∫(x^21)dx

(x^5)/5 + 9(x^22)/22 [0, Infinity]

lim(x -- infinity)

The integral tends to infinity