A 16 kg block is dragged over a rough, horizontal surface by a constant force of 188 N acting at an angle of 33.2 ◦ above the horizontal. The block is displaced 96.1 m, and the coefficient of kinetic friction is 0.147. Find the magnitude of the work done by the force of friction.

Respuesta :

Answer:[tex]W=-762.84\ J[/tex]

Explanation:

Given

mass of block [tex]m=16\ kg[/tex]

Force [tex]F=188\ N[/tex]

Force is applied at an angle of [tex]\theta =33.2^{\circ}[/tex]

Displacement of block [tex]s=96.1\ m[/tex]

coefficient of kinetic friction [tex]\mu _k=0.147[/tex]

Friction force acting on block [tex]f_r[/tex]

[tex]f_r=\mu _kN[/tex]

where N=Normal reaction

[tex]N=mg-F\sin \theta [/tex]

[tex]N=16\times 9.8-188\times \sin (33.2)[/tex]

[tex]N=156.8-102.94[/tex]

[tex]N=53.859\approx 54\ N[/tex]

[tex]f_r=0.147\times 54[/tex]

[tex]f_r=7.938\ N[/tex]

Work done by friction

[tex]W=f_r\cdot s[/tex]

[tex]W=7.938\times 96.1\times \cos (180)[/tex]

[tex]W=-762.84\ J[/tex]

Negative sign indicates that displacement is against the direction of force.

Answer:

Magnitude of work done W = 2.214 kW.

Explanation:

Given :

Mass of object , m = 16 kg.

Angle from horizon , [tex]\theta=33.2^o[/tex].

Force applied , F = 188 N.

Displacement of block , D = 96.1 m.

Coefficient of kinetic friction , [tex]\mu=0.147[/tex] .

Component of force, required to move the block, [tex]F\ cos\theta=188\times cos\ 33.2^o=157.31\ N.[/tex]

Also , frictional force , [tex]f=\mu N=\mu (mg)=0.147\times 16\times 9.8=23.045\ N.[/tex]

We know, work done , [tex]W = Fdcos\theta[/tex]   ( Here [tex]\theta = 180^o[/tex] , because the direction of displacement is opposite the direction of frictional force .)

Putting all value in above equation :

We get , [tex]W=23.045\times 96.1\times cos\ 180^o=-2214.62 \ W=-2.214\ kW.[/tex]

Magnitude of work done W = 2.214 kW.

Hence, this is the required solution.