A beam of protons moves in a circle of radius 0.20 m. The protons move perpendicular to a 0.36-T magnetic field. (a) What is the speed of each proton? (b) Determine the magnitude of the centripetal force that acts on each proton.

Respuesta :

Answer:

a) [tex]v=6.898\times 10^{6}\ m.s^{-1}[/tex] is the speed of each proton

b) [tex]F_c=3.97\times 10^{-13}\ N[/tex]

Explanation:

Given:

radius of path of motion, [tex]r=0.2\ m[/tex]

we know charge on protons, [tex]q=1.6\times 10^{-19}\ C[/tex]

magnetic field strength, [tex]B=0.36\ T[/tex]

we've mass of proton, [tex]m=1.67\times 10^{-27}\ kg[/tex]

a)

From the equivalence of magnetic force and the centripetal force on the proton:

[tex]F_B=F_C[/tex]

[tex]q.v.B=\frac{m.v^2}{r}[/tex]

[tex]q.B=\frac{m.v}{r}[/tex]

where:

v = speed of the proton

[tex](1.6\times 10^{-19})\times 0.36=\frac{1.67\times 10^{-27}\times v}{0.2}[/tex]

[tex]v=6.898\times 10^{6}\ m.s^{-1}[/tex] is the speed of each proton

b)

Now the centripetal force on each proton:

[tex]F_c=m.\frac{v^2}{r}[/tex]

[tex]F_c=1.67\times 10^{-27}\times \frac{(6.898\times 10^6)^2}{0.2}[/tex]

[tex]F_c=3.97\times 10^{-13}\ N[/tex]