Respuesta :
d=18cm=0.18m thickness of board
vi=420m/s speed before entering the board
vf=320m/s speed when leaving the board
vf²=vi²+2×a×d
Acceleration a=(vf²-vi²)/2/d
a=-205.5m/s².
As expected, a is negative because the bullet is decelerated.
vf=vi+a×t
t=(vf-vi)/a=(320-420)/(-205.5)= 100/205.5=0.486s
t=0.486s=486ms
Answer:
a) [tex]a=-205555.56\ m.s^{-2}[/tex]
b) [tex]t=4.865\times 10^{-5}\ s[/tex]
Explanation:
Given:
- thickness of the sheet, [tex]s=18\ cm=0.18\ m[/tex]
- initial speed of bullet before entering the board, [tex]u=420\ m.s^{-1}[/tex]
- final speed of the bullet after emerging form the board, [tex]v=320\ m.s^{-1}[/tex]
a)
Using the equation of motion:
[tex]v^2=u^2+2a.s[/tex]
[tex]320^2=420^2+2\times a\times0.18[/tex]
[tex]a=-205555.56\ m.s^{-2}[/tex]
b)
Using the other form of equation of motion:
[tex]v=u+a.t[/tex]
[tex]320=420-205555.56t[/tex]
[tex]t=4.865\times 10^{-5}\ s[/tex]