The manganese content of a certain stainless steel is to be verified by an activation measurement. The activity induced in a sample of volume V by neutron capture during a time t is given by (4.57) A foil of area 1 cm2 and thickness 2 mm is irradiated in a thermal neutron flux of 3 × 1012/(cm2 s) for 2 h. Counts taken immediately afterward yield an activity of 150 mCi for the induced Mn-56, half-life 2.58 h. Assuming that the atom number density of the alloy is 0.087 × 1024/cm3 and that the cross-section for capture in Mn-55 is 13.3 barns, find the percent of Mn in the sample. 4.18 For fast neutrons in uranium-

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

percent of Mn in the sample is 1.12%

Explanation:

     The formula to obtain the number of manganese N is

                     [tex]N =\frac{A}{\phi V \sigma_a[1-e^{(-\lambda t)}]} ----(1)[/tex]

 Here

    φ is the flux

    V is the volume

    t is the time

    A is the initial activity of Manganese

    N is the number of manganese

   [tex]\lambda[/tex]The yield an activity  (rate  constant)

[tex]The\ yield\ an\ activity\ (rate \ constant)\ = \frac{0.693}{t_{(1/2)}}----(2)[/tex]

 From the question we are given that half live [tex]t_{(1/2)}[/tex] is 2.58 h = 9288 sec

 Hence

           [tex]\lambda = \frac{0.693}{9288} =7.46*10^{-5}[/tex]

     The volume is V = Area × Thickness

                                  [tex]Thickness = 2/10 =0.2cm[/tex]

                                 [tex]V = 0.2cm^3[/tex]

   [tex]Substituting \ 3*10^{12} \ for \ flux \ , 9288 sec \ for \ time \ 13.3*10^{-24} \ for \\\sigma _a \ 0.2cm^2 \ for \ V \ 150*10^{-3} \ for \ initial \ activity \ and \ 7.46*10^{-5} \ for \\\ \lambda \ into \ equation \ one[/tex]

      [tex]N = \frac{150*10^{-3} * 3.7*10^{10}}{(3*10^{12}*0.2 *13.3 *10^{-24}(1-e^{(7.46^{-5})(7200)}))}[/tex]

       [tex]N = 9.789*10^{20}C/m^3[/tex]

  The formula for percent of manganese in the sample

            Let it be denoted by W

              [tex]W = \frac{N}{atom \ number \ density} ----(3)[/tex]

  Substituting  [tex]N = 9.789*10^{20}C/m^3[/tex] for N and [tex]0.087 *10^{24}[/tex] for atom number density , in equation 3

         [tex]W =\frac{9.789*10^{20}}{0.087*10^{24}} *\frac{100}{1}[/tex]

              =  1.12%

   

Ver imagen okpalawalter8