Respuesta :
sin(45+w)=sin(45)cos(a)+cos(45)sin(a)
sin(45-a)=sin(45)cos(a)-cos(45)sin(a)
sin2(45+a)=sin2(45)cos2(a)+2sin(45)cos(a)cos(45)sin(a)+cos2(45)sin2(a)
sin2(45+a)=sina(45)cosa(w)-2sin(45)cos(a)cos(45)sin(a)+cos2(45)sin2(a)
sin2(45+a)+sin2(45-a)=2sin2(45)cos2(a)+2cos2(45)sin2(a)
sin(45)=cos(45)=(√2)/2
sin2(45)=cos2(45)=(1/2)
sin2(45+a)+sin2(45-a)=2(1/2)cos2(a)+2(1/2)sin2(a)
sin2(45+a)+sin2(45-a)=cos2(a)+sin2(a)=1
Step-by-step explanation:
We know that sinA=cos (90-A)
and, sin²A +cos²A= 1
Now , here sin(45+A) = cos {90-(45+A)}
= cos(45-A)
cos²(45-A)+ sin²(45-A)= 1
by Applying (sin²A +cos²A= 1)