Respuesta :

Answer:

Part 1) [tex]m\angle A=58.41^o[/tex]

Part 2) [tex]m\angle B=73.40^o[/tex]

Part 3) [tex]m\angle C=48.19^o[/tex]

Step-by-step explanation:

step 1

Find the measure of angle A

we know that

Applying the law of cosines

[tex]BC^2=AB^2+AC^2-2(AB)(AC)cos(A)[/tex]

substitute the given values

[tex]8^2=7^2+9^2-2(7)(9)cos(A)[/tex]

[tex]64=130-126cos(A)[/tex]

[tex]126cos(A)=130-64[/tex]

[tex]126cos(A)=66[/tex]

[tex]cos(A)=66/126[/tex]

using calculator

[tex]m\angle A=cos^{-1}(66/126)= 58.41^o[/tex]

step 2

Find the measure of angle B

we know that

Applying the law of cosines

[tex]AC^2=AB^2+BC^2-2(AB)(BC)cos(B)[/tex]

substitute the given values

[tex]9^2=7^2+8^2-2(7)(8)cos(B)[/tex]

[tex]81=113-112cos(B)[/tex]

[tex]112cos(B)=113-81[/tex]

[tex]112cos(B)=32[/tex]

[tex]cos(B)=32/112[/tex]

using calculator

[tex]m\angle B=cos^{-1}(32/112)= 73.40^o[/tex]

step 3

Find the measure of angle C

Remember that the sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]A+B+C=180^o[/tex]

substitute the given values

[tex]58.41^o+73.40^o+C=180^o[/tex]

[tex]131.81^o+C=180^o[/tex]

[tex]C=180^o-131.81^o=48.19^o[/tex]