Respuesta :

Step-by-step explanation:

Consider x⅓ =a

then the following expression can be written as

a²+a-2

a²+2a-a-2

a(a+2)-1(a+2)

(a+2)(a-1)

a= -2 or, a= 1

Putting the value of a

x⅓ = -2 and, x⅓ =1

its k=2

One solution was found :

                  k = 2

Step by step solution :

Step  1  :

           1

Simplify   —

           3

Equation at the end of step  1  :

       2          1      

 ((k • —) +  (k • —)) -  2  = 0

       3          3      

Step  2  :

           2

Simplify   —

           3

Equation at the end of step  2  :

       2     k    

 ((k • —) +  —) -  2  = 0

       3     3    

Step  3  :

Adding fractions which have a common denominator :

    Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

2k + k     3k

——————  =  ——

  3        3

Reducing to Lowest Terms :

   The above result can still be reduced :

    3k    

    —— = k

    3      

Equation at the end of step  3  :

 k -  2  = 0

Step  4  :

Equation at the end of step  4  :

 k - 2  = 0

Step  5  :

Solving a Single Variable Equation :

  Solve  :    k-2 = 0

Add  2  to both sides of the equation :

                     k = 2

One solution was found :

                  k = 2