A cubic function of the y=ax^3+bx^2+cx+d
yields the following table:

Answer:
a=-5
b=4
c=-1
d=0
Step-by-step explanation:
The given cubic equation is of the form;
[tex]y = a {x}^{3} + b {x}^{2} + cx + d[/tex]
When x=0 and y=0, we get:
[tex]0= a ({0})^{3} + b( {0})^{2} + c(0) + d[/tex]
[tex]d = 0[/tex]
when x=1 and y=-2, we get:
[tex] - 2= a ({1})^{3} + b( {1})^{2} + c(1) \\ a + b + c = - 2[/tex]
When x=2 and y=-26, we get:
[tex] - 26= a ({2})^{3} + b( {2})^{2} + c(2) + d \\ - 26 = 8a + 4b + 2c \\ 4a + 2b + c = - 13[/tex]
When x=3 and y=-54, we get:
[tex] - 54= a ({3})^{3} + b( {3})^{2} + c(3) + d \\ - 54 = 27a + 9b + 3c \\ 9a + 3b + c = - 18[/tex]
We need to solve the system:
[tex]a + b + c = - 2 \\ 4a + 2b + c = - 13 \\ 9a + 3b + c = - 18[/tex]
From the top equation:
[tex]c = - 2 - a - b[/tex]
Put this expression into equation 2 and 3
[tex]4a + 2b - 2 - a - b = - 13 \\ 3a + b = - 11[/tex]
also
[tex]9a + 3b - 2 - a - b = - 18 \\ 8a + 2b = - 16 \\ 4a + b = - 8[/tex]
Now we solve the system:
[tex]3a + b = - 11 \\ 4a + b = - 16[/tex]
subtract the top equation from the down one to get:
[tex]4a - 3a = - 16 - - 11 \\ a = - 5[/tex]
This implies that:
[tex]3( - 5) + b = - 11 \\ - 15 + b = - 11 \\ b = - 11 + 15 = 4[/tex]
and
[tex]c = - 2 - - 5 - 4 = - 1[/tex]
A cubic function has a leading exponent of 3
The values of the coefficients are: [tex]a = 3[/tex], [tex]b=-20[/tex], [tex]c = 15[/tex] and [tex]d = 0[/tex]
The cubic function is given as:
[tex]y = ax^3 + bx^2 + cx + d[/tex]
When x = 0, y = 0.
So, we have:
[tex]a(0)^3 + b(0)^2 + c(0) + d = 0[/tex]
[tex]d = 0[/tex]
When x = 1, y = -2.
So, we have:
[tex]a(1)^3 + b(1)^2 + c(1) + d = -2[/tex]
[tex]a + b + c + d = -2[/tex]
Substitute 0 for d
[tex]a + b + c = -2[/tex]
When x = 2, y = -26.
So, we have:
[tex]a(2)^3 + b(2)^2 + c(2) = -26[/tex]
[tex]8a + 4b + 2c = -26[/tex]
Divide through by 2
[tex]4a + 2b + c = -13[/tex]
When x = 3, y = -54.
So, we have:
[tex]a(3)^3 + b(3)^2 + c(3) = -54[/tex]
[tex]27a + 9b + 3c= -54[/tex]
Divide through by 3
[tex]9a + 3b + c= -18[/tex]
So, we have:
[tex]a + b + c = -2[/tex]
[tex]4a + 2b + c = -13[/tex]
[tex]9a + 3b + c= -18[/tex]
Make c the subject
[tex]c = -2 -a -b[/tex]
[tex]c = -13 -4a -2b[/tex]
[tex]c = -18 -9a -3b[/tex]
Equate all the three equations
[tex]-2-a-b = -13-4a-2b[/tex]
[tex]-2-a-b = -18 - 9a -3b[/tex]
Simplify the equations
[tex]4a -a +2b - b = 2 - 13[/tex]
[tex]3a +b = -11[/tex]
[tex]9a -a+3b -b =2-18[/tex]
[tex]8a+2b =-16[/tex]
Divide through by 2
[tex]4a+b =-8[/tex]
Subtract [tex]4a+b =-8[/tex] and [tex]3a +b = -11[/tex]
[tex]4a - 3a + b - b =-8 + 11[/tex]
[tex]a =3[/tex]
Substitute 3 for a in [tex]4a+b =-8[/tex]
[tex]4(3) + b = -8[/tex]
[tex]12 + b = -8[/tex]
Subtract 12 from both sides
[tex]b = -20[/tex]
Recall that:
[tex]c = -2 -a -b[/tex]
So, we have:
[tex]c = -2 -3 + 20[/tex]
[tex]c = 15[/tex]
Hence, the values of the coefficients are:
[tex]a = 3[/tex]
[tex]b=-20[/tex]
[tex]c = 15[/tex]
[tex]d = 0[/tex]
Read more about cubic functions at:
https://brainly.com/question/20896994