Respuesta :

Answer:

Slope of (0,2) and (-8,-8):    5/4

Slope of (-8,-5) and (8,15):   5/4

Both slopes are 5/4

m = 5/4

Step-by-step explanation:

To find the slope:

1. Use the formula  [tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] .

2. Assign point 1 and point 2

3. State (x₁ , y₁) and (x₂, y₂)

4. Substitute x₁ , y₁, x₂, and y₂ into the formula

5. Solve

Slope of (0,2) and (-8,-8):

Point 1: (0,2)        x₁ = 0     y₁ = 2

Point 2: (-8,-8)     x₂ = -8   y₂ = -8

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]         Formula for slope

[tex]m = \frac{-8-2}{-8-0}[/tex]           Substituted points

[tex]m = \frac{-10}{-8}[/tex]          Simplified the subtraction then the negatives

[tex]m = \frac{10}{8}[/tex]          Reduce fraction by dividing top and bottom by 2

[tex]m = \frac{5}{4}[/tex]              First slope

Slope of (-8,-5) and (8,15):

Point 1: (-8,-5)     x₁ = -8    y₁ = -5

Point 2: (8,15)     x₂ = 8     y₂ = 15

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]            Formula for slope

[tex]m = \frac{15-(-5)}{8-(-8)}[/tex]         Substituted points

[tex]m = \frac{15+5}{8+8}[/tex]             Simplified the subtraction into addition

[tex]m = \frac{20}{16}[/tex]                Reduce fraction (divide top and bottom by 4)

[tex]m = \frac{5}{4}[/tex]                 Second slope