Respuesta :
Answer:
A = 5x² + 6x + 1
Step-by-step explanation:
The area (A) of a trapezoid is calculated as
A = [tex]\frac{1}{2}[/tex] h (a + b)
where h is the height and a, b the parallel bases, thus
A = [tex]\frac{1}{2}[/tex] (x + 1)(6x - 5 + 4x + 7)
= [tex]\frac{1}{2}[/tex] (10x + 2)(x + 1)
= (5x + 1)(x + 1) ← distribute using FOIL
= 5x² + 6x + 1
The expression for the area of the trapezoid is required.
The required equation is [tex]A=5x^2+6x+1[/tex]
The bases are
[tex]a=6x-5[/tex]
[tex]b=4x+7[/tex]
h = Height = [tex]x+1[/tex]
The area of the trapezoid is
[tex]A=\dfrac{(a+b)h}{2}\\\Rightarrow A=\dfrac{(6x-5+4x+7)(x+1)}{2}\\\Rightarrow A=\dfrac{(10x+2)(x+1)}{2}\\\Rightarrow A=\dfrac{10x^2+10x+2x+2}{2}\\\Rightarrow A=\dfrac{10x^2+12x+2}{2}\\\Rightarrow A=5x^2+6x+1[/tex]
The required equation is [tex]A=5x^2+6x+1[/tex]
Learn more:
https://brainly.com/question/23814640?referrer=searchResults