Respuesta :
Answer:
The rotation of 90* reflected across the x-axis, so I would think that it is -O. 90(O,-O).
90(O,-O)greater than or equal to ( a units, b units).
Step-by-step explanation:
The given composite transformations of the point (x, y), gives the
following values;
- S(90, O)/([tex]Ref_{x-axis}[/tex])(x, ) = (-y, -x)
- S[tex]\left(Ref_{x-axis})[/tex]/<a, b> (x, y) = (-x + a, y + b)
- S<a, b>/(180°, 0) = (y + b, x + a)
How can the transformation be expressed as functions?
The given transformations are;
First composite transformation
Rotation 90 degrees counterclockwise about the origin gives;
(x, y) [tex]\underrightarrow{90^{\circ}}[/tex] (-y, x)
A reflection across the x-axis of the point (-y, x) gives (-y - x)
Therefore;
- S(90, O)/([tex]Ref_{x-axis}[/tex])(x, ) = (-y, -x)
Second composite transformation
Reflection of (x, y) across the y-axis gives (-x, y)
A translation a units to the right and b units up gives (-x + a, y + b)
Which gives;
- S[tex]\left(Ref_{x-axis})[/tex]/<a, b> (x, y) = (-x + a, y + b)
Third transformation
A translation a units to the right and b units up gives (x + a, y + b)
A rotation 180° counterclockwise of the point (x + a, y + b) gives (y + b, x + a)
Which gives;
- S<a, b>/(180°, 0) = (y + b, x + a)
Learn more about properties rigid transformations here:
https://brainly.com/question/1801406