The solution is [tex]x = \frac{-29}{13}, y = \frac{69}{26}[/tex]
Solution:
Given system of equations are:
4x + 6y = 7 --------- eqn 1
3x - 2y = -12 -------- eqn 2
Let us solve the system of equations by elimination method
Multiply eqn 2 by 3
9x - 6y = -36 ----- eqn 3
Add eqn 1 and eqn 3
4x + 6y = 7
9x - 6y = -36
( + ) --------------
13x = -29
[tex]x = \frac{-29}{13}[/tex]
Substitute [tex]x = \frac{-29}{13}[/tex] in eqn 1
[tex]4( \frac{-29}{13}) + 6y = 7\\\\6y = 7 + \frac{4 \times 29}{13}\\\\6y = \frac{207}{13}\\\\y = \frac{69}{26}[/tex]
Thus the solution is [tex]x = \frac{-29}{13}, y = \frac{69}{26}[/tex]