Respuesta :

Padoru

Use this equation when converting parametric form to polar form:

[tex]r^2=x^2+y^2[/tex]

Substitute the given values of x and y into the equation:

[tex]r^2=(4\cos\theta)^2+(4\sin\theta)^2[/tex]

[tex]r^2=16\cos^2\theta+16\sin^2\theta[/tex]

Recall the trigonometric identity: [tex]\sin^2\theta+\cos^2\theta=1[/tex]

[tex]r^2=16(\cos^2\theta+\sin^2\theta)[/tex]

[tex]r^2=16[/tex]

Take the square root of both sides

[tex]r=4[/tex]

That's the equation in polar form. Let me know if you need any clarifications, thanks!

~ Padoru

Answer:

(4,theta) or just r = 4

Step-by-step explanation:

r² = x² + y²

(4cosX)² + (4sinX)²

= 16(cos² + sin²)

r² =16

r = 4