Respuesta :
Use this equation when converting parametric form to polar form:
[tex]r^2=x^2+y^2[/tex]
Substitute the given values of x and y into the equation:
[tex]r^2=(4\cos\theta)^2+(4\sin\theta)^2[/tex]
[tex]r^2=16\cos^2\theta+16\sin^2\theta[/tex]
Recall the trigonometric identity: [tex]\sin^2\theta+\cos^2\theta=1[/tex]
[tex]r^2=16(\cos^2\theta+\sin^2\theta)[/tex]
[tex]r^2=16[/tex]
Take the square root of both sides
[tex]r=4[/tex]
That's the equation in polar form. Let me know if you need any clarifications, thanks!
~ Padoru
Answer:
(4,theta) or just r = 4
Step-by-step explanation:
r² = x² + y²
(4cosX)² + (4sinX)²
= 16(cos² + sin²)
r² =16
r = 4