Respuesta :

Answer:

[tex]\frac{(x-2)^2}{9}+\frac{(y-1)^2}{16}=1[/tex]

Step-by-step explanation:

[tex]x=2-3\cos(t)[/tex]

[tex]y=1+4\sin(t)[/tex]

Let's solve for [tex]\cos(t)[/tex] in the first equation and then solve for [tex]\sin(t)[/tex] in the second equation.

I will then use the following identity to get right of the parameter, [tex]t[/tex]:

[tex]\cos^2(t)+\sin^2(t)=1[/tex] (Pythagorean Identity).

Let's begin with [tex]x=2-3\cos(t)[/tex].

Subtract 2 on both sides:

[tex]x-2=-3\cos(t)[/tex]

Divide both sides by -3:

[tex]\frac{x-2}{-3}=\cos(t)[/tex]

Now time for the second equation, [tex]y=1+4\sin(t)[/tex].

Subtract 1 on both sides:

[tex]y-1=4\sin(t)[/tex]

Divide both sides by 4:

[tex]\frac{y-1}{4}=\sin(t)[/tex]

Now let's plug it into our Pythagorean Identity:

[tex]\cos^2(t)+\sin^2(t)=1[/tex]

[tex]\frac{x-2}{-3})^2+(\frac{y-1}{4})^2=1[/tex]

[tex]\frac{(x-2)^2}{(-3)^2}+\frac{(y-1)^2}{4^2}=1[/tex]

[tex]\frac{(x-2)^2}{9}+\frac{(y-1)^2}{16}=1[/tex]

Answer:

Option 1

Step-by-step explanation:

x = 2 - 3cost

cost = (x-2)/-3

(cost)² = (x-2)²/9

y = 1 + 4sint

sint = (y-1)/4

(sint)² = (y-1)²/16

cos² + sin² = 1

(x-2)²/9 + (y-1)²/16 = 1